找了許久,終於找到 Borland C++ Builder 5 的 ADOExpress 更新檔了,

目前的工作,從上禮拜開始,卡著一個 bug 到現在,

曾經看到不少篇文章提到,這個錯誤訊息是 BCB 在 ADO 上很久以來的 bug,

連我剛剛忍不住打去問外包的廖先生,他也是知道這個問題,只會用繞道的方式繞過這個 bug:

我也是用繞的方式去解決啊-_-,但是有時候仍然失效給我看 -_-

不過,剛剛居然被我找到還活著的下載點了!!

安裝之後,同樣的問題仍然存在。

 

「!?」

 

對,仍然存在,見鬼了~~

 

不過亂試了幾下,發現問題被解決了,

在砍掉之前繞掉 bug 的程式碼之間,我突然想到一個有可能造成問題的錯誤:「在某些條件下,資料表會被清空兩次!」

沒想到,砍掉之後,所有的問題都解決了

genlee 發表在 痞客邦 留言(2) 人氣()

譯自
http://www2.biglobe.ne.jp/~oni_page/other/etc/pr03.html
http://mixi.jp/view_community.pl?id=1772737

(版本2 2008/10/12更新)



譯註
SE是日本軟體公司裡程式設計師的頭子。自己不太寫程式,

主要工作是跟客戶確認規格。
程式設計師多半自己不面對客戶。
跟PM又不一樣。(有什麼比較貼切的職稱翻譯嗎?)

—————

genlee 發表在 痞客邦 留言(0) 人氣()

 

Q-switch (Q switch,Q-switching)

Q-switching,以具有「大能量的脈衝」聞名,是一項能產生脈衝式雷射的科技。這項科技能讓雷射釋出相當高(Giga Watt)能量峰值的脈衝光。以 Q-switch 觸發的雷射,具有遠比以 CW(連續波)觸發的方式還要高的能量。相較於另一項脈衝雷射的新科技(mode locking)比較,Q-switch 型的雷射為頻率較低、單脈衝能量較高的特性,脈衝長度也較長。這兩項科技,有時候會同時被應用在某些用途上。

 

Q-switching 技術於 1958 年,由 Gordon Gould 首度提出,並由 R.W. Hellwarth F.J. McClung 1961 年(或 1962 年)建立,並在 Ruby 雷射中,以electrically switched Kerr cell shutters (電子式切換 Kerr cell 快門?)證實。

 

Q-switching的原理:

Q-switching 的效果可由放入可變衰減器到雷射共振腔中達成。當衰減器被啟用時,由增益材料(可被激發並釋出光線的材料)被激發出來的光線並不會被反射回去(故雷射此時尚無法開始擊發)。在共振腔中放入衰減器,等同於降低 Q-factorquality factor of the optical resonator)數值的效果。當 Q-factor 值越高時,代表光線在共振腔中每次來回共振的損失越低,反之則是損失增加。而用於這個用途的「可變衰減器」,正是我們常聽到的「Q-switch」。

 

首先,供激發的雷射材料被激發出光線,而在其後的 Q-switch 則使傳遞過來的光線無法反射回雷射材料(這種情況,等效於製造一個 Q-factor 較低的共振腔)。雖然這樣會促成群數反轉效應,但由於光線仍然留在 Q-switch 裡,尚未反射回雷射材料,故雷射尚未開始擊發。由於雷射的擊發頻率取決於進入雷射材料的光線量,當雷射材料被氙燈(即 Q-switch Laser 中常見的 Lamp)pumping 時,儲存在增益材料中的能量不斷上升。由於自發性發射光線或其他程序的損失,在一段時間之後,儲存在增益材料中的能量會達到某個臨界高點(我們說這項材料已經飽和了),此時,Q-switch 元件會很快地由低 Q-factor 轉變為高 Q-factor,使得光線得以射回雷射材料,雷射此時已啟動並開始擊發。由於儲存在增益材料中的能量相當高的緣故,光線的能量在共振腔中能極快地提昇(這也使儲存在增益材料中的能量急速耗盡)。整體上,我們在外部看到的結果是一束能量密度相當高的雷射光束被擊發出雷射腔。

 

Q-switching主要有兩種類型:

主動式 Q-switching

在這裡,Q-switch 是一個由外部控制、Q-factor 可變的衰減器。我們能利用機械性裝置(如在共振腔中擺放shutterchopper wheelspinning mirror),或是利用某種調節器(如聲光或光電元件)達成效果-如 Pockels cell Kerr cell。能量損失率的降低(或是 Q-factor 的升高)由外部事件觸發;一般而言,是以電子訊號觸發。也因此,雷射脈波的擊發頻率可以由此控制。

 

一般來說,這種調節器具有快速地由低的 Q-factor 轉換為高 Q-factor 的功能,並提供良好的控制。額外的優點是:被拒絕的光線也許會因為被耦合而釋出共振腔,這項優點可以被應用在其他用途。當 Q-switch 處於低 Q-factor 的狀態時,一個由外部產生的光束能夠被耦合併穿透調節器、進入共振腔。這可以拿來在共振腔中「播種」。只要我們由外部打入具有我們要求性質的光束(如反轉模態或某種波長),當 Q-factor 被急速提昇時,由雷射釋出的 Q-switched 脈衝光,將繼承我們播入種子的特性。

genlee 發表在 痞客邦 留言(4) 人氣()

  • 這是一篇加密文章,請輸入密碼
  • 密碼提示:
  • 請輸入密碼:

Q-switching

 

From Wikipedia, the free encyclopedia

 

Q-switching, sometimes known as giant pulse formation, is a technique by which a laser can be made to produce a pulsed output beam. The technique allows the production of light pulses with extremely high (gigawatt) peak power, much higher than would be produced by the same laser if it were operating in a continuous wave (constant output) mode. Compared to modelocking, another technique for pulse generation with lasers, Q-switching leads to much lower pulse repetition rates, much higher pulse energies, and much longer pulse durations. Both techniques are sometimes applied at once .

 

Q-switching was first proposed in 1958 by Gordon Gould, and independently discovered and demonstrated in 1961 or 1962 by R.W. Hellwarth and F.J. McClung using electrically switched Kerr cell shutters in a ruby laser.

 

Principle of Q-switching

 

Q-switching is achieved by putting some type of variable attenuator inside the laser's optical resonator. When the attenuator is functioning, light which leaves the gain medium does not return, and lasing cannot begin. This attenuation inside the cavity corresponds to a decrease in the Q factor or quality factor of the optical resonator. A high Q factor corresponds to low resonator losses per roundtrip, and vice versa. The variable attenuator is commonly called a "Q-switch", when used for this purpose.

 

Initially the laser medium is pumped while the Q-switch is set to prevent feedback of light into the gain medium (producing an optical resonator with low Q). This produces a population inversion, but laser operation cannot yet occur since there is no feedback from the resonator. Since the rate of stimulated emission is dependent on the amount of light entering the medium, the amount of energy stored in the gain medium increases as the medium is pumped. Due to losses from spontaneous emission and other processes, after a certain time the stored energy will reach some maximum level; the medium is said to be gain saturated. At this point, the Q-switch device is quickly changed from low to high Q, allowing feedback and the process of optical amplification by stimulated emission to begin. Because of the large amount of energy already stored in the gain medium, the intensity of light in the laser resonator builds up very quickly; this also causes the energy stored in the medium to be depleted almost as quickly. The net result is a short pulse of light output from the laser, known as a giant pulse, which may have a very high peak intensity.

 

文章標籤

genlee 發表在 痞客邦 留言(0) 人氣()

  • 這是一篇加密文章,請輸入密碼
  • 密碼提示:
  • 請輸入密碼: